论文标题

TGK-PLANNER:一个有效的拓扑指导的运动动力学计划者

TGK-Planner: An Efficient Topology Guided Kinodynamic Planner for Autonomous Quadrotors

论文作者

Ye, Hongkai, Zhou, Xin, Wang, Zhepei, Xu, Chao, Chu, Jian, Gao, Fei

论文摘要

在本文中,我们提出了一项轻巧但有效的拓扑指导的运动动力学计划者(TGK-Planner),用于四型攻击性飞行,并且在机载计算资源有限的情况下。所提出的系统遵循传统的分层计划工作流程,其新颖的设计可提高途径和轨迹优化子模块的鲁棒性和效率。首先,我们提出了拓扑指导图,该图大致捕获了环境的拓扑结构,并指导基于抽样的运动动力学计划者的状态采样。这样,我们显着提高了找到安全且动态可行的轨迹的效率。然后,我们在优化框架中完善了轨迹的平滑度和连续性,该框架结合了同型约束,以确保轨迹的安全性。优化程序被配制为二次程序编程(QP)的序列,并且可以在几毫秒内迭代求解。最后,将所提出的系统集成到完全自主的四极管中,并在各种模拟和现实世界的场景中进行了验证。基准比较表明,关于效率和轨迹质量,我们的方法优于最先进的方法。此外,我们将作为开源软件包发布代码。

In this paper, we propose a lightweight yet effective Topology Guided Kinodynamic planner (TGK-Planner) for quadrotor aggressive flights with limited onboard computing resources. The proposed system follows the traditional hierarchical planning workflow, with novel designs to improve the robustness and efficiency in both the pathfinding and trajectory optimization sub-modules. Firstly, we propose the topology guided graph, which roughly captures the topological structure of the environment and guides the state sampling of a sampling-based kinodynamic planner. In this way, we significantly improve the efficiency of finding a safe and dynamically feasible trajectory. Then, we refine the smoothness and continuity of the trajectory in an optimization framework, which incorporates the homotopy constraint to guarantee the safety of the trajectory. The optimization program is formulated as a sequence of quadratic programmings (QPs) and can be iteratively solved in a few milliseconds. Finally, the proposed system is integrated into a fully autonomous quadrotor and validated in various simulated and real-world scenarios. Benchmark comparisons show that our method outperforms state-of-the-art methods with regard to efficiency and trajectory quality. Moreover, we will release our code as an open-source package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源