论文标题
关于格罗莫夫五重奏的五重奏理论的紧急几何形状三倍
On Emergent Geometry of the Gromov-Witten Theory of Quintic Calabi-Yau Threefold
论文作者
论文摘要
我们执行了用于写下与五重奏Calabi-yau三倍相关的可集成层次结构的明确计算。我们还为在五五吉特尼(Gromov-witten)理论中出现的几何结构(例如Frobenius歧管结构和特殊的Kähler结构)进行计算。
We carry out the explicit computations that are used to write down the integrable hierarchy associated with the quintic Calabi-Yau threefold. We also do the calculations for the geometric structures emerging in the Gromov-Witten theory of the quintic, such as the Frobenius manifold structure and the special Kähler structure.