论文标题

准确且有效的R $^2 $扫描元化梯度近似

Accurate and numerically efficient r$^2$SCAN meta-generalized gradient approximation

论文作者

Furness, James W., Kaplan, Aaron D., Ning, Jinliang, Perdew, John P., Sun, Jianwei

论文摘要

最近提出的RSCAN功能[J.化学物理。 150,161101(2019)]是扫描功能的一种正则形式[Phys。莱特牧师。 115,036402(2015)],它以从确切的交换相关功能中知道的破坏约束为代价,以提高扫描的数值性能。我们通过恢复对RSCAN的确切约束依从性来构建一个新的元化梯度近似。由此产生的功能可维持RSCAN的数值性能,同时还原扫描的可传递精度。

The recently proposed rSCAN functional [J. Chem. Phys. 150, 161101 (2019)] is a regularized form of the SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)] that improves SCAN's numerical performance at the expense of breaking constraints known from the exact exchange-correlation functional. We construct a new meta-generalized gradient approximation by restoring exact constraint adherence to rSCAN. The resulting functional maintains rSCAN's numerical performance while restoring the transferable accuracy of SCAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源