论文标题
非均匀离散分布的最佳量化
Optimal quantization for nonuniform discrete distributions
论文作者
论文摘要
本文探讨了几种离散概率分布的最佳量化过程。量化是一种用于近似具有较小代表点的复杂分布的技术,这在数据压缩和信号处理等字段中很重要。首先,我们检查了一组有限值的两个特定的非均匀分布,并确定不同近似级别的最佳代表点。然后,我们将分析扩展到两个无限的离散分布:一个支持自然数的倒数,另一个是自然数本身的支持。对于这些分布,我们计算最佳代表集,并评估它们近似原始分布的程度。最后,当已知最佳集合时,我们解决了反向问题,以确定基础分布。我们的结果提供了理论见解和计算技术,可用于信息理论和数据分析。
This paper explores the process of optimal quantization for several types of discrete probability distributions. Quantization is a technique used to approximate a complex distribution with a smaller set of representative points, which is important in fields such as data compression and signal processing. We begin by examining two specific nonuniform distributions over a finite set of values and identify the best representative points for different levels of approximation. We then extend our analysis to two infinite discrete distributions: one supported on the reciprocals of natural numbers and another on the natural numbers themselves. For these distributions, we compute the optimal sets of representatives and assess how well they approximate the original distributions. Finally, we address the reverse problem-determining the underlying distribution when the optimal sets are known. Our results provide both theoretical insights and computational techniques useful in information theory and data analysis.