论文标题
质量功能依赖于暗物质光环的动态状态
The mass function dependence on the dynamical state of dark matter haloes
论文作者
论文摘要
星系簇是宇宙中最庞大的暗物质光环的发光示踪剂。要将它们用作宇宙学探针,需要对暗物质光环的性质进行详细描述。我们表征了光环的动力状态如何影响高质量端的光环质量功能。我们使用了仅暗物质的模拟套件和高质量对象m> 2.7E13 m/h。我们测量了浓度,偏移和自旋的平均关系,与光环质量和红移的关系。我们研究了围绕平均关系的分布。我们测量了光晕质量功能,这是偏移,自旋和红移的函数。我们制定了一个广义质量函数框架,该框架解释了暗物质光环的动态状态。我们确认在高质量下的浓度上升的发现,并提供了一个模型,该模型可以通过一个方程来预测不同质量和红移值的浓度。我们使用修改后的Schechter函数对平均浓度,偏移和自旋的分布进行建模。与高质量光环相比,低质量光环的浓度显示出更快的红移进化,尤其是在高浓度方案中。低红移时偏移参数较小,与近来结构的松弛一致。其分布的峰值从z = 1.4转移到z = 0的1.5倍。单个模型被合并为综合的质量函数模型,作为自旋和偏移的函数。我们的模型在红移0时以3%的精度恢复了基准质量功能,并将红移进化为Z = 1.5。在测量光环质量函数时,该方法解释了光环的动态状态。它提供了与星系群集观测中动态选择效果的连接。这是使用群集计数作为探针的精确宇宙学的关键。
Galaxy clusters are luminous tracers of the most massive dark matter haloes in the Universe. To use them as a cosmological probe, a detailed description of the properties of dark matter haloes is required. We characterize how the dynamical state of haloes impacts the halo mass function at the high-mass end. We used the dark matter-only MultiDark suite of simulations and the high-mass objects M > 2.7e13 M/h therein. We measured mean relations of concentration, offset, and spin as a function of halo mass and redshift. We investigated the distributions around the mean relations. We measured the halo mass function as a function of offset, spin, and redshift. We formulated a generalized mass function framework that accounts for the dynamical state of the dark matter haloes. We confirm the discovery of the concentration upturn at high masses and provide a model that predicts the concentration for different values of mass and redshift with one single equation. We model the distributions around the mean concentration, offset, and spin with modified Schechter functions. The concentration of low-mass haloes shows a faster redshift evolution compared to high-mass haloes, especially in the high-concentration regime. The offset parameter is smaller at low redshift, in agreement with the relaxation of structures at recent times. The peak of its distribution shifts by a factor of 1.5 from z = 1.4 to z = 0. The individual models are combined into a comprehensive mass function model, as a function of spin and offset. Our model recovers the fiducial mass function with 3% accuracy at redshift 0 and accounts for redshift evolution up to z = 1.5. This approach accounts for the dynamical state of the halo when measuring the halo mass function. It offers a connection with dynamical selection effects in galaxy cluster observations. This is key toward precision cosmology using cluster counts as a probe.