论文标题

生成嵌入在社交网络中的异性双方网络

Generating a Heterosexual Bipartite Network Embedded in Social Network

论文作者

Azizi, Asma, Qu, Zhuolin, Lewis, Bryan, Mac Hyman, James

论文摘要

我们描述了如何生成具有规定的联合分配的异性恋网络,该网络嵌入了规定的大规模社交联系网络中。性网络的结构在性传播感染(STI)传播的方式中起着重要作用。产生模仿现实世界的网络集合对于评估控制性传播感染的强大缓解策略至关重要。当前大多数生成性网络的算法仅使用性活动数据,例如每月的伴侣数量来产生性网络。现实世界中的性网络还取决于基于年龄,位置以及社交和工作活动的偏见混合。我们描述了一种使用广泛的社交活动数据来生成可能的异性恋网络的方法。我们首先要大规模模拟一个城市中成千上万的人进行日常活动,包括工作,学校,购物和在家中的活动。我们从这些活动中提取一个社交网络,节点是人,边缘表示社交互动,例如在同一位置工作。该社交网络捕获了不同年龄段,生活在不同地点,其经济状况和其他人口因素之间的相关性。我们使用社交联系网络来定义一个嵌入在扩展社交网络中的两部分异性网络。由此产生的性网络捕获了社交网络中固有的有偏见的混合,并且基于这种网络配对的模型可用于根据受感染者的社交接触来调查新颖的干预策略。我们在代表新奥尔良年轻的性活跃社区的异性恋网络中传播的模型中说明了这种方法。

We describe how to generate a heterosexual network with a prescribed joint-degree distribution that is embedded in a prescribed large-scale social contact network. The structure of a sexual network plays an important role in how sexually transmitted infections (STIs) spread. Generating an ensemble of networks that mimics the real-world is crucial to evaluating robust mitigation strategies for controling STIs. Most of the current algorithms to generate sexual networks only use sexual activity data, such as the number of partners per month, to generate the sexual network. Real-world sexual networks also depend on biased mixing based on age, location, and social and work activities. We describe an approach to use a broad range of social activity data to generate possible heterosexual networks. We start with a large-scale simulation of thousands of people in a city as they go through their daily activities, including work, school, shopping, and activities at home. We extract a social network from these activities where the nodes are the people and the edges indicate a social interaction, such as working in the same location. This social network captures the correlations between people of different ages, living in different locations, their economic status, and other demographic factors. We use the social contact network to define a bipartite heterosexual network that is embedded within an extended social network. The resulting sexual network captures the biased mixing inherent in the social network, and models based on this pairing of networks can be used to investigate novel intervention strategies based on the social contacts of infected people. We illustrate the approach in a model for the spread of Chlamydia in the heterosexual network representing the young sexually active community in New Orleans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源