论文标题

IMS在Semeval-2020任务1:您能走多低?词汇语义变化检测中的维度

IMS at SemEval-2020 Task 1: How low can you go? Dimensionality in Lexical Semantic Change Detection

论文作者

Kaiser, Jens, Schlechtweg, Dominik, Papay, Sean, Walde, Sabine Schulte im

论文摘要

我们介绍了用于SEMEVAL-2020任务1的系统结果,该任务1基于基于Skip-gram和负抽样的Skip-gram,利用了常用的词汇语义变化检测模型。我们的系统着重于向量初始化(VI)对齐,将VI与子任务2的当前顶级模型进行比较,并证明如果我们优化VI维度,则可以优于这些模型。我们证明,性能的差异在很大程度上可以归因于特定于模型的噪声来源,并且我们揭示了维数和VI对齐中频率诱导的噪声之间的牢固关系。我们的结果表明,整合矢量空间比对的词汇语义变化模型应更加关注维数参数的作用。

We present the results of our system for SemEval-2020 Task 1 that exploits a commonly used lexical semantic change detection model based on Skip-Gram with Negative Sampling. Our system focuses on Vector Initialization (VI) alignment, compares VI to the currently top-ranking models for Subtask 2 and demonstrates that these can be outperformed if we optimize VI dimensionality. We demonstrate that differences in performance can largely be attributed to model-specific sources of noise, and we reveal a strong relationship between dimensionality and frequency-induced noise in VI alignment. Our results suggest that lexical semantic change models integrating vector space alignment should pay more attention to the role of the dimensionality parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源