论文标题
关于对称强的直径的双重性,$ 2 $在Lipschitz空间中
On the duality of the symmetric strong diameter $2$ property in Lipschitz spaces
论文作者
论文摘要
我们表征了弱的$^*$对称强度直径$ 2 $ $ 2 $属性在Lipschitz功能空间中,其属性不含Lipschitz的空间。我们称这种新物业可分解的八人体性,并以对称强度直径为2美元的属性研究其双重性。为了使Banach空间分解为八面体,其双重空间具有较弱的$^*$对称强度直径$ 2 $的属性。是否也是必要的条件仍然开放。
We characterise the weak$^*$ symmetric strong diameter $2$ property in Lipschitz function spaces by a property of its predual, the Lipschitz-free space. We call this new property decomposable octahedrality and study its duality with the symmetric strong diameter $2$ property in general. For a Banach space to be decomposably octahedral it is sufficient that its dual space has the weak$^*$ symmetric strong diameter $2$ property. Whether it is also a necessary condition remains open.