论文标题
一氧化碳形成和在超新星中冷却
Carbon monoxide formation and cooling in supernovae
论文作者
论文摘要
分子物理学的包含是一个重要的作品,在建模超新星(SNE)的光谱时,难题往往会缺少。分子对光谱有直接影响,尤其是在红外线中,又是间接影响,因为它们对某些物理条件(例如温度)的影响是由于它们的影响。在本文中,我们旨在研究分子形成和非本地热力学平衡(NLTE)冷却,特别关注CO,这是超新星中最常见的分子。我们还旨在确定超新星化学对物理参数的依赖性以及对不确定性的相对敏感性。我们对分子的破坏和形成SN光谱合成代码Sumo实施了化学动力学描述。此外,选定的分子耦合到全NLTE水平的种群框架中,因此,我们将分子NLTE冷却掺入温度方程中。我们在SN 1987a的150至600天之间生产了CO形成的测试模型,并研究了所得分子质量对输入参数的敏感性。我们发现,热演化与形成的CO的量之间存在着密切的相互依赖性,主要是通过与O+的重要温度敏感的CO破坏过程。几百天后,CO完全主导了超新星的氧气碳带的冷却,因此,这几乎没有光学发射。计算出的CO质量尺度的不确定性与单个率的典型不确定性因子大致线性线性。我们证明了如何使用分子质量来限制超新星的各种物理参数。
The inclusion of molecular physics is an important piece that tends to be missing from the puzzle when modeling the spectra of supernovae (SNe). Molecules have both a direct impact on the spectra, particularly in the infrared, and an indirect one as a result of their influence on certain physical conditions, such as temperature. In this paper, we aim to investigate molecular formation and non-local thermodynamic equilibrium (NLTE) cooling, with a particular focus on CO, the most commonly detected molecule in supernovae. We also aim to determine the dependency of supernova chemistry on physical parameters and the relative sensitivity to rate uncertainties. We implemented a chemical kinetic description of the destruction and formation of molecules into the SN spectral synthesis code SUMO. In addition, selected molecules were coupled into the full NLTE level population framework and, thus, we incorporated molecular NLTE cooling into the temperature equation. We produced a test model of the CO formation in SN 1987A between 150 and 600 days and investigated the sensitivity of the resulting molecular masses to the input parameters. We find that there is a close inter-dependency between the thermal evolution and the amount of CO formed, mainly through an important temperature-sensitive CO destruction process with O+. After a few hundred days, CO completely dominates the cooling of the oxygen-carbon zone of the supernova which, therefore, contributes little optical emission. The uncertainty of the calculated CO mass scales approximately linearly with the typical uncertainty factor for individual rates. We demonstrate how molecular masses can potentially be used to constrain various physical parameters of the supernova.