论文标题
$ r $颜色的分区功能的公式,根据除数的总和及其倒数
A formula for the $r$-coloured partition function in terms of the sum of divisors function and its inverse
论文作者
论文摘要
令$ p _ { - r}(n)$表示$ r $颜色的分区功能,$σ(n)= \ sum_ {d | n} d $表示$ n $的正分数之和。该注释的目的是证明以下$$ p _ { - r}(n)=θ(n)+\,\ sum_ {k = 1}^{n-1} \ frac {r^{k+1}}}}}} {(k+1)! \ sum_ {α_2\,= k-1}^{α_1-1} \ cdots \ sum_ {α_k\,= 1}^{α__{k-1} -1}θ(n-α_1)θ(n-α_1)θ(α_1-α_2)\ cdots phots tin_1-k) $θ(n)= n^{ - 1} \,σ(n)$及其倒数$$σ(n)= n \,\ sum_ {r = 1}^n \ frac {( - 1)^{r-1)^{r-1}}}} {r} {r} {r} {r} {r} $$
Let $p_{-r}(n)$ denote the $r$-coloured partition function, and $σ(n)=\sum_{d|n}d$ denote the sum of positive divisors of $n$. The aim of this note is to prove the following $$ p_{-r}(n)=θ(n)+\,\sum_{k=1}^{n-1}\frac{r^{k+1}}{(k+1)!} \sum_{α_1\,= k}^{n-1} \, \sum_{α_2\,= k-1}^{α_1-1} \cdots \sum_{α_k\, = 1}^{α_{k-1}-1}θ(n-α_1) θ(α_1 -α_2) \cdots θ(α_{k-1}-α_k) θ(α_k) $$ where $θ(n)=n^{-1}\, σ(n)$, and its inverse $$σ(n) = n\,\sum_{r=1}^n \frac{(-1)^{r-1}}{r}\, \binom{n}{r}\, p_{-r}(n). $$