论文标题
随机热方程作为选民模型扰动的搅拌动力学的极限
The stochastic heat equation as the limit of a stirring dynamics perturbed by a voter model
论文作者
论文摘要
我们证明,在尺寸中,$ d \ le 3 $ 3 $一个被选民模型扰动的动力学的修改密度场会收敛到随机热方程。
We prove that in dimension $d\le 3$ a modified density field of a stirring dynamics perturbed by a voter model converges to the stochastic heat equation.