论文标题
$ x $ - 从有限的几何学角度来看
$X$-States From a Finite Geometric Perspective
论文作者
论文摘要
据发现,一旦考虑到$ 15 $不同类型的两倍$ x $ states,一旦考虑到它们的纠缠属性,将其分为两套(基数$ 9 $和6美元)。我们{在某些参数方面,具有最大混合子系统的$ x $状态的有效性和纠缠性质},并表明它们的属性与第二和第二等级的符号极性极空空间的一类特殊的几何超平面相关。最后,我们介绍了超平面状态的概念,并简要介绍了它们的非本地特性。
It is found that $15$ different types of two-qubit $X$-states split naturally into two sets (of cardinality $9$ and $6$) once their entanglement properties are taken into account. We {characterize both the validity and entangled nature of the $X$-states with maximally-mixed subsystems in terms of certain parameters} and show that their properties are related to a special class of geometric hyperplanes of the symplectic polar space of order two and rank two. Finally, we introduce the concept of hyperplane-states and briefly address their non-local properties.