论文标题

在ASP中建模多机构认知计划

Modelling Multi-Agent Epistemic Planning in ASP

论文作者

Burigana, Alessandro, Fabiano, Francesco, Dovier, Agostino, Pontelli, Enrico

论文摘要

设计理由并对世界采取行动的代理一直是人工智能界的主要目标之一。尽管为了在“简单”领域进行计划,但代理人可以仅依靠关于世界的事实,例如经济,安全,正义和政治,但对世界的知识可能不足以实现理想的目标。在这些情况下,认知推理,即关于代理人对自己和其他代理人信仰的信念的推理,对于设计获奖策略至关重要。 本文解决了利用声明性编程技术的多机构认知环境中推理的问题。特别是,本文介绍了基于编程的多局答案集计划者的实际实施,该计划可以在多机构认知环境中进行推理,称为柏拉图(认识论多代理答案集编程求解器)。 ASP范式使计划者W.R.T.的简洁明了设计。其他命令式实施,促进正式验证正确性的发展。 本文展示了计划者如何利用临时认知状态表示和ASP求解器的效率,在文献中收集的基准方面具有竞争性能结果。它正在考虑在TPLP中接受。

Designing agents that reason and act upon the world has always been one of the main objectives of the Artificial Intelligence community. While for planning in "simple" domains the agents can solely rely on facts about the world, in several contexts, e.g., economy, security, justice and politics, the mere knowledge of the world could be insufficient to reach a desired goal. In these scenarios, epistemic reasoning, i.e., reasoning about agents' beliefs about themselves and about other agents' beliefs, is essential to design winning strategies. This paper addresses the problem of reasoning in multi-agent epistemic settings exploiting declarative programming techniques. In particular, the paper presents an actual implementation of a multi-shot Answer Set Programming-based planner that can reason in multi-agent epistemic settings, called PLATO (ePistemic muLti-agent Answer seT programming sOlver). The ASP paradigm enables a concise and elegant design of the planner, w.r.t. other imperative implementations, facilitating the development of formal verification of correctness. The paper shows how the planner, exploiting an ad-hoc epistemic state representation and the efficiency of ASP solvers, has competitive performance results on benchmarks collected from the literature. It is under consideration for acceptance in TPLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源