论文标题
在量子计算机上模拟周期系统
Simulating periodic systems on quantum computer
论文作者
论文摘要
变异量子本质量(VQE)是在近期噪声中间尺度量子设备上模拟分子的电子结构特性的最具吸引力的量子算法之一。在这项工作中,我们概括了用于模拟扩展系统的VQE算法。然而,使用现有的VQE算法对一维(1D)无限氢链的数值研究表明,相对于确切的完整构型相互作用(FCI)结果,基态能量显着偏差。在这里,我们提出了两个方案,以提高扩展系统的量子模拟的准确性。第一个是一种修改的VQE算法,它引入了Hartree-Fock轨道的单一转换,以避免复杂的哈密顿量。第二个是将VQE与量子子空间扩展方法(VQE/QSE)结合的VQE方法。数值基准计算表明,两个方案中的这两个方案中的两个都对1D氢链的势能曲线进行了足够的精确描述。此外,使用VQE/QSE方法计算的激发态也与FCI结果非常吻合。
The variational quantum eigensolver (VQE) is one of the most appealing quantum algorithms to simulate electronic structure properties of molecules on near-term noisy intermediate-scale quantum devices. In this work, we generalize the VQE algorithm for simulating extended systems. However, the numerical study of an one-dimensional (1D) infinite hydrogen chain using existing VQE algorithms shows a remarkable deviation of the ground state energy with respect to the exact full configuration interaction (FCI) result. Here, we present two schemes to improve the accuracy of quantum simulations for extended systems. The first one is a modified VQE algorithm, which introduces an unitary transformation of Hartree-Fock orbitals to avoid the complex Hamiltonian. The second one is a Post-VQE approach combining VQE with the quantum subspace expansion approach (VQE/QSE). Numerical benchmark calculations demonstrate that both of two schemes provide an accurate enough description of the potential energy curve of the 1D hydrogen chain. In addition, excited states computed with the VQE/QSE approach also agree very well with FCI results.