论文标题

模糊描述Gödel语义下的逻辑的分拟合和三表象

Bisimulation and bisimilarity for fuzzy description logics under the Gödel semantics

论文作者

Nguyen, Linh Anh, Ha, Quang-Thuy, Nguyen, Ngoc Thanh, Nguyen, Thi Hong Khanh, Tran, Thanh-Luong

论文摘要

描述逻辑(DLS)是代表有关域的知识的合适形式主义,其中不仅由属性描述对象,而且还通过对象之间的二进制关系描述。当数据和有关它们的知识含糊和不精确时,DLS的模糊扩展可用于此类域。在此类域中指定对象类的可能方法之一是在模糊DLS中使用概念。由于DLS是模态逻辑的变体,因此DLS中的不变性为特征是双性异性。解释的双相关关系是该解释的最大自身仿真。在DLS及其模糊扩展中,这种等效关系可用于概念学习。在本文中,我们定义和研究了Gödel语义下模糊DLS的模糊分成性和三表现性,以及对于以涉及否定而扩展的这种逻辑的清晰分配和强大的分配性。所考虑的逻辑是DL $ \ Mathcal {alc} _ {reg} $(PDL的变体)的模糊扩展,在反角色,名义上的(合格或不合格的)数字限制,通用角色,局部反射性和涉及否定的局部反射性和否定下,具有其他功能。我们制定并证明结果是模糊(酥脆)分成型的概念的不变性,双性异性(分别较强的双层性)下模糊的Tboxex/aboxes的条件不变性,以及在不含fuzzy dls的newsignation semtripition(sibiminality themimility)和轩尼诗 - 米尔纳(Hennessy-Milner)的特性(ersive)。除了这些基本结果外,我们还提供了使用模糊分成式仿真将模糊DLS的表达能力分开的结果,以及使用强大的双相似性来最大程度地减少模糊解释的结果。

Description logics (DLs) are a suitable formalism for representing knowledge about domains in which objects are described not only by attributes but also by binary relations between objects. Fuzzy extensions of DLs can be used for such domains when data and knowledge about them are vague and imprecise. One of the possible ways to specify classes of objects in such domains is to use concepts in fuzzy DLs. As DLs are variants of modal logics, indiscernibility in DLs is characterized by bisimilarity. The bisimilarity relation of an interpretation is the largest auto-bisimulation of that interpretation. In DLs and their fuzzy extensions, such equivalence relations can be used for concept learning. In this paper, we define and study fuzzy bisimulation and bisimilarity for fuzzy DLs under the Gödel semantics, as well as crisp bisimulation and strong bisimilarity for such logics extended with involutive negation. The considered logics are fuzzy extensions of the DL $\mathcal{ALC}_{reg}$ (a variant of PDL) with additional features among inverse roles, nominals, (qualified or unqualified) number restrictions, the universal role, local reflexivity of a role and involutive negation. We formulate and prove results on invariance of concepts under fuzzy (resp. crisp) bisimulation, conditional invariance of fuzzy TBoxex/ABoxes under bisimilarity (resp. strong bisimilarity), and the Hennessy-Milner property of fuzzy (resp. crisp) bisimulation for fuzzy DLs without (resp. with) involutive negation under the Gödel semantics. Apart from these fundamental results, we also provide results on using fuzzy bisimulation to separate the expressive powers of fuzzy DLs, as well as results on using strong bisimilarity to minimize fuzzy interpretations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源