论文标题
使用LQR-RRT*和非线性MPC进行机上组装的运动计划和控制
Motion Planning and Control for On-Orbit Assembly using LQR-RRT* and Nonlinear MPC
论文作者
论文摘要
部署大型,复杂的空间结构对现代科学界引起了极大的兴趣,因为它可以为获得科学,交流和观察信息提供新的能力。但是,许多理论任务设计都包含必须受到发射车的要求(例如数量和质量)限制的复杂性。为了减轻这种限制,使用机上添加剂制造和机器人组件可以灵活地构建大型复杂结构,包括望远镜,空间站和通信卫星。这项工作的贡献是使用线性二次调节器和快速探索随机树(LQR-RRT*),路径平滑并使用闭合环的非线性回收层控制优化器来制定运动计划和控制算法。通过获得考虑避免障碍物和车辆和机械手的动态的受控轨迹,自由飞行者迅速考虑并计划建造太空结构。该方法是对修复,加油和重新提供空间结构组件的自然概括,同时在操作过程中提供最佳的无碰撞轨迹。
Deploying large, complex space structures is of great interest to the modern scientific world as it can provide new capabilities in obtaining scientific, communicative, and observational information. However, many theoretical mission designs contain complexities that must be constrained by the requirements of the launch vehicle, such as volume and mass. To mitigate such constraints, the use of on-orbit additive manufacturing and robotic assembly allows for the flexibility of building large complex structures including telescopes, space stations, and communication satellites. The contribution of this work is to develop motion planning and control algorithms using the linear quadratic regulator and rapidly-exploring randomized trees (LQR-RRT*), path smoothing, and tracking the trajectory using a closed-loop nonlinear receding horizon control optimizer for a robotic Astrobee free-flyer. By obtaining controlled trajectories that consider obstacle avoidance and dynamics of the vehicle and manipulator, the free-flyer rapidly considers and plans the construction of space structures. The approach is a natural generalization to repairing, refueling, and re-provisioning space structure components while providing optimal collision-free trajectories during operation.