论文标题

辅助感知:优化观察以传达状态

Assisted Perception: Optimizing Observations to Communicate State

论文作者

Reddy, Siddharth, Levine, Sergey, Dragan, Anca D.

论文摘要

我们旨在帮助用户在机器人远距离和视觉障碍的导航等任务中估计世界的状态,在这种任务中,用户可能具有导致次优行为的系统偏见:他们可能很难同时处理多个传感器的观察结果,收到延迟的观察结果,或者是过度距离障碍物的距离。尽管我们无法直接更改用户的内部信念或其内部状态估计过程,但我们的见解是,我们仍然可以通过修改用户的观察结果来为他们提供帮助。我们没有向用户展示其真实的观察结果,而是合成了新的观察结果,这些观察结果可在用户处理时会导致更准确的内部状态估计。我们将此方法称为辅助状态估计(ASE):自动化助手使用真实的观察来推断世界状态,然后为用户消费(例如,通过增强的现实接口)生成修改的观察结果,并优化了修改,以诱导用户的新信念以匹配助手的当前信念。我们在一项用户研究中评估了ASE的12名参与者,每个参与者执行四个任务:两个具有已知用户偏见的任务 - 带宽限制的图像分类和一个带有观察延迟的驾驶视频游戏 - 以及两个具有我们方法必须学习的未知偏见 - 引导的2D导航和一个Lunar Landar Lander Teleporation视频游戏。每个域中出现了不同的援助策略,例如快速揭示信息的像素以加快图像分类,使用动态模型来消除驾驶时观察延迟,识别附近的标志以进行导航,并夸大了Lander游戏中倾斜的视觉指示器。结果表明,ASE具有带宽约束,观察延迟和其他未知偏见的用户的任务绩效。

We aim to help users estimate the state of the world in tasks like robotic teleoperation and navigation with visual impairments, where users may have systematic biases that lead to suboptimal behavior: they might struggle to process observations from multiple sensors simultaneously, receive delayed observations, or overestimate distances to obstacles. While we cannot directly change the user's internal beliefs or their internal state estimation process, our insight is that we can still assist them by modifying the user's observations. Instead of showing the user their true observations, we synthesize new observations that lead to more accurate internal state estimates when processed by the user. We refer to this method as assistive state estimation (ASE): an automated assistant uses the true observations to infer the state of the world, then generates a modified observation for the user to consume (e.g., through an augmented reality interface), and optimizes the modification to induce the user's new beliefs to match the assistant's current beliefs. We evaluate ASE in a user study with 12 participants who each perform four tasks: two tasks with known user biases -- bandwidth-limited image classification and a driving video game with observation delay -- and two with unknown biases that our method has to learn -- guided 2D navigation and a lunar lander teleoperation video game. A different assistance strategy emerges in each domain, such as quickly revealing informative pixels to speed up image classification, using a dynamics model to undo observation delay in driving, identifying nearby landmarks for navigation, and exaggerating a visual indicator of tilt in the lander game. The results show that ASE substantially improves the task performance of users with bandwidth constraints, observation delay, and other unknown biases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源