论文标题

可变形的多孔介质的多尺度扩展有限元法

Multiscale Extended Finite Element Method for Deformable Fractured Porous Media

论文作者

Xu, Fanxiang, Hajibeygi, Hadi, Sluys, Lambertus J.

论文摘要

在许多地球科学应用中出现了可变形的断裂多孔介质。尽管扩展有限元(XFEM)已在计算力学社区中成功开发,以精确建模变形,但其在天然地球科学应用中的应用并不直接。这主要是由于地下地层是异质的,并且在不同尺度上具有许多断裂的大长度尺度。在这项工作中,我们根据本地计算的基础函数提出了一种新型的XFEM多尺度公式。局部多尺度函数捕获了裂缝引入的异质性和不连续性。局部边界条件设置为遵循降低的维系统,以保留基本函数的准确性。使用这些多尺度,然后通过代数和求解一个多尺度的粗尺度系统,其中不存在由于裂缝而引起的富集。这种公式可以显着降低计算成本,同时保留了离散位移矢量空间的准确性。最终,使用相同的多尺度基础函数将粗尺度解决方案插值回到了精细的系统。所提出的多尺度XFEM(MS-XFEM)也集成在两个阶段的代数迭代求解器中,通过该求解器可以实现误差降低到任何所需的水平。提出了几项概念证明的数值测试,以评估开发方法的性能。结果表明,与精细参考XFEM溶液相比,MS-XFEM是准确的。同时,它在精细分辨率方面比XFEM高得多。因此,它为大规模骨折的多孔培养基开发了第一种可扩展的XFEM方法。

Deformable fractured porous media appear in many geoscience applications. While the extended finite element (XFEM) has been successfully developed within the computational mechanics community for accurate modeling of the deformation, its application in natural geoscientific applications is not straightforward. This is mainly due to the fact that subsurface formations are heterogeneous and span large length scales with many fractures at different scales. In this work, we propose a novel multiscale formulation for XFEM, based on locally computed basis functions. The local multiscale basis functions capture the heterogeneity and discontinuities introduced by fractures. Local boundary conditions are set to follow a reduced-dimensional system, in order to preserve the accuracy of the basis functions. Using these multiscale bases, a multiscale coarse-scale system is then governed algebraically and solved, in which no enrichment due to the fractures exist. Such formulation allows for significant computational cost reduction, at the same time, it preserves the accuracy of the discrete displacement vector space. The coarse-scale solution is finally interpolated back to the fine scale system, using the same multiscale basis functions. The proposed multiscale XFEM (MS-XFEM) is also integrated within a two-stage algebraic iterative solver, through which error reduction to any desired level can be achieved. Several proof-of-concept numerical tests are presented to assess the performance of the developed method. It is shown that the MS-XFEM is accurate, when compared with the fine-scale reference XFEM solutions. At the same time, it is significantly more efficient than the XFEM on fine-scale resolution. As such, it develops the first scalable XFEM method for large-scale heavily fractured porous media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源