论文标题

在保守的几何形状中太阳系的模型

Model of a solar system in the conservative geometry

论文作者

Green, Edward Lee

论文摘要

潘德雷斯(Pandres)表明,与一般相对性相比,协方差群体向保守转化的群体扩大导致的几何形状。将正顺式四个作为场变量,基本几何对象是$c_μ$表示的曲率向量。已经开发了从适当的标量拉格朗日场方程式,用于自由场和带有来源的现场。我们首先审查了使用自由场解决方案对太阳系建模的模型,以及为什么这些结果是不可接受的。我们还表明,在我们的理论中,标准的Schwarzschild指标也是不可接受的。最后,我们证明有一些涉及来源的解决方案,这些解决方案与一般相对论PPN参数一致,从而近似Schwarzschild解决方案。主要区别在于,爱因斯坦张量并非零相同,但包括密度,径向压力和切向压的小值。更高的精度实验应该能够确定这些模型的有效性。这些结果进一步证实,潘德雷斯(Pandres)开发的理论是物理学的基本理论。

Pandres has shown that an enlargement of the covariance group to the group of conservative transformations leads to a richer geometry than that of general relativity. Using orthonormal tetrads as field variables, the fundamental geometric object is the curvature vector denoted by $C_μ$. From an appropriate scalar Lagrangian field equations for both free-field and the field with sources have been developed. We first review models which use a free-field solution to model the Solar System and why these results are unacceptable. We also show that the standard Schwarzschild metric is also unacceptable in our theory. Finally we show that there are solutions which involve sources which agree with general relativity PPN parameters and thus approximate the Schwarzschild solution. The main difference is that the Einstein tensor is not identically zero but includes small values for the density, radial pressure and tangential pressure. Higher precision experiments should be able to determine the validity of these models. These results add further confirmation that the theory developed by Pandres is the fundamental theory of physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源