论文标题
带有缓慢振荡符号的傅立叶卷积操作员的calkin图像
Calkin images of Fourier convolution operators with slowly oscillating symbols
论文作者
论文摘要
令$ c^*$ - $ l^\ infty(\ Mathbb {r})$和$ so_ {x(\ mathbb {r})}^\ diamond $是banach的代数为banach founier $ x(banach function $ x(mathbbbb的banach代数),我们表明,由乘以$ a \inφ$的乘法$ ai $产生的代数的calkin图像的相互作用与傅立叶卷积运算符$ w^0(b)$产生的代数的calkin图像,并带有符号$ so_ so_ so_ so_ {x(\ nathbb in Mathbb {\ mathbb {r}^raild and of so_由常数乘法的操作员生成。
Let $Φ$ be a $C^*$-subalgebra of $L^\infty(\mathbb{R})$ and $SO_{X(\mathbb{R})}^\diamond$ be the Banach algebra of slowly oscillating Fourier multipliers on a Banach function space $X(\mathbb{R})$. We show that the intersection of the Calkin image of the algebra generated by the operators of multiplication $aI$ by functions $a\inΦ$ and the Calkin image of the algebra generated by the Fourier convolution operators $W^0(b)$ with symbols in $SO_{X(\mathbb{R})}^\diamond$ coincides with the Calkin image of the algebra generated by the operators of multiplication by constants.