论文标题

无线网络上的沟通效率和分布式学习:原理和应用程序

Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications

论文作者

Park, Jihong, Samarakoon, Sumudu, Elgabli, Anis, Kim, Joongheon, Bennis, Mehdi, Kim, Seong-Lyun, Debbah, Mérouane

论文摘要

机器学习(ML)是第五代(5G)通信系统及以后的有前途的推动者。通过将智能插入网络边缘,边缘节点可以主动执行决策,从而在经历零通信延迟的同时对当地的环境变化和干扰做出反应。为了实现这一目标,必须通过不断以分布式方式交换新的数据和ML模型更新,以迎合时间变化的渠道和网络动态的高度ML推理精度。通过优化通信有效载荷类型,传输技术和调度以及ML架构,算法和数据处理方法,驯服这种新型数据流量归结为提高分布式学习的通信效率。为此,本文旨在提供有关相关沟通和ML原则的整体概述,从而通过选定的用例来提供沟通效率和分布式学习框架。

Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond. By imbuing intelligence into the network edge, edge nodes can proactively carry out decision-making, and thereby react to local environmental changes and disturbances while experiencing zero communication latency. To achieve this goal, it is essential to cater for high ML inference accuracy at scale under time-varying channel and network dynamics, by continuously exchanging fresh data and ML model updates in a distributed way. Taming this new kind of data traffic boils down to improving the communication efficiency of distributed learning by optimizing communication payload types, transmission techniques, and scheduling, as well as ML architectures, algorithms, and data processing methods. To this end, this article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源