论文标题
Dirichlet系列带有定期系数,Riemann的功能方程和dirichlet $ L $ functions的真实零
Dirichlet series with periodic coefficients, Riemann's functional equation and real zeros of Dirichlet $L$-functions
论文作者
论文摘要
在本文中,我们提供了Dirichlet系列的定期系数,这些系数具有Riemann的功能方程式和Dirichlet $ L $ functions的真实零。细节如下。令$ l(s,χ)$为dirichlet $ l $ function,$ g(χ)$是与原始的dirichlet字符$χ$($ {\ rm {mod}}}}} \,\,\,q $)的高斯总和。 put $ f(s,χ):= q^s l(s,χ) + i^{ - κ(χ)} g(χ)l(s,\ OverlineC)$,其中$ \ OverlineC $是$χ$和$κ$κ和$κ(χ)的复杂偶联物:=(1-χ(1-χ(-1))/2 $。然后,我们证明,如果$ f(s,χ)$满足Riemann的功能方程式,则在汉堡定理中出现的功能方程式,如果$χ$甚至是。此外,我们表明$ f(σ,χ)\ ne 0 $ $σ\ ge 1 $。此外,我们证明了所有$ 1/2 \ leσ<1 $ for $ f(σ,χ)\ ne 0 $,并且仅当$ l(σ,χ)\ ne 0 $ for ALL $ 1/2 \ leσ<1 $。当$ f(s,χ)$的所有零(S)> 0 $的所有零在线$σ= 1/2 $时,仅当Grh for $ l(s,χ)$是正确的。但是,$ f(s,χ)$在关键行$σ= 1/2 $的情况下无限地存在许多零,如果$χ$是非现实的。
In this paper, we give Dirichlet series with periodic coefficients that have Riemann's functional equation and real zeros of Dirichlet $L$-functions. The details are as follows. Let $L(s,χ)$ be the Dirichlet $L$-function and $G(χ)$ be the Gauss sum associate with a primitive Dirichlet character $χ$ (${\rm{mod}} \,\, q$). Put $f (s,χ) := q^s L(s,χ) + i^{-κ(χ)} G(χ) L(s,\overlineχ)$, where $\overlineχ$ is the complex conjugate of $χ$ and $κ(χ) :=(1-χ(-1))/2$. Then we prove that $f (s,χ)$ satisfies Riemann's functional equation appearing in Hamburger's theorem if $χ$ is even. In addition, we show that $f (σ,χ) \ne 0$ all $σ\ge 1$. Moreover, we prove that $f(σ,χ) \ne 0$ for all $1/2 \le σ< 1$ if and only if $L(σ,χ) \ne 0$ for all $1/2 \le σ< 1$. When $χ$ is real, all zeros of $f(s,χ)$ with $\Re (s) >0$ are on the line $σ=1/2$ if and only if GRH for $L(s,χ)$ is true. However, $f (s,χ)$ has infinitely many zeros off the critical line $σ=1/2$ if $χ$ is non-real.