论文标题

通过适应性注意几乎没有射击分类

Few-shot Classification via Adaptive Attention

论文作者

Jiang, Zihang, Kang, Bingyi, Zhou, Kuangqi, Feng, Jiashi

论文摘要

培训可以快速适应新任务的神经网络模型对于几次学习问题是非常可取的但又具有挑战性的。最近的几次学习方法主要集中于从两个方面开发各种元学习策略,即优化初始模型或学习距离度量。在这项工作中,我们通过优化和快速调整基于很少的参考样本的查询样品表示形式提出了一种新颖的几声学习方法。要具体而言,我们设计了一种简单有效的元蛋白蛋白能策略,以适应样本表示形式并产生软关注以完善表示形式,以便可以提取查询和支持样品中的相关特征,以进行更好的几次分类。这样的自适应注意模型还能够解释分类模型在某种程度上作为分类的证据。正如实验上所证明的那样,所提出的模型在各种基准分类和细粒识别数据集上实现了最新的分类结果。

Training a neural network model that can quickly adapt to a new task is highly desirable yet challenging for few-shot learning problems. Recent few-shot learning methods mostly concentrate on developing various meta-learning strategies from two aspects, namely optimizing an initial model or learning a distance metric. In this work, we propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples. To be specific, we devise a simple and efficient meta-reweighting strategy to adapt the sample representations and generate soft attention to refine the representation such that the relevant features from the query and support samples can be extracted for a better few-shot classification. Such an adaptive attention model is also able to explain what the classification model is looking for as the evidence for classification to some extent. As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源