论文标题
DANA:多元传感器数据的维度自适应神经体系结构
DANA: Dimension-Adaptive Neural Architecture for Multivariate Sensor Data
论文作者
论文摘要
嵌入可穿戴设备和移动设备中的运动传感器可以动态选择传感器流和采样率,从而实现了多种应用,例如电源管理和数据共享控制。尽管深度神经网络(DNNS)在传感器数据分类中实现了竞争精度,但DNN通常从具有固定采样率的固定传感器中处理传入数据,并且其输入维度的变化会导致相当准确的准确损失,不必要的计算或操作中的失败。我们引入了一个维度自适应池(DAP)层,该层使DNNS灵活,更健壮,以更改传感器的可用性和采样率。 DAP在可变尺寸的卷积滤波器图上运行,并产生适合前馈和经常性层的固定尺寸的输入。我们还提出了一个维度自适应培训(DAT)程序,以启用使用DAP更好地概括推理时可行数据维度集的DNN。 DAT包括在向前传球期间的随机选择,并通过几个向后通过的累积梯度进行优化。结合DAP和DAT,我们展示了如何将非自适应DNN转换为维度自适应神经体系结构(DANA),同时保留相同数量的参数。与现有方法相比,我们的解决方案在推理时可能在可能的数据维度范围内提供了更好的分类精度,并且不需要上采样或插补,从而减少了不必要的计算。在七个数据集(用于人类活动识别和三个合成数据集的四个基准现实世界数据集和三个合成数据集)上进行的实验表明,DANA可以防止最先进的DNNS分类准确性的显着损失,并且与碱基相比,它更好地捕获了动态传感器可用性和valy速率下的传感器数据中的相关模式。
Motion sensors embedded in wearable and mobile devices allow for dynamic selection of sensor streams and sampling rates, enabling several applications, such as power management and data-sharing control. While deep neural networks (DNNs) achieve competitive accuracy in sensor data classification, DNNs generally process incoming data from a fixed set of sensors with a fixed sampling rate, and changes in the dimensions of their inputs cause considerable accuracy loss, unnecessary computations, or failure in operation. We introduce a dimension-adaptive pooling (DAP) layer that makes DNNs flexible and more robust to changes in sensor availability and in sampling rate. DAP operates on convolutional filter maps of variable dimensions and produces an input of fixed dimensions suitable for feedforward and recurrent layers. We also propose a dimension-adaptive training (DAT) procedure for enabling DNNs that use DAP to better generalize over the set of feasible data dimensions at inference time. DAT comprises the random selection of dimensions during the forward passes and optimization with accumulated gradients of several backward passes. Combining DAP and DAT, we show how to transform non-adaptive DNNs into a Dimension-Adaptive Neural Architecture (DANA), while keeping the same number of parameters. Compared to existing approaches, our solution provides better classification accuracy over the range of possible data dimensions at inference time and does not require up-sampling or imputation, thus reducing unnecessary computations. Experiments on seven datasets (four benchmark real-world datasets for human activity recognition and three synthetic datasets) show that DANA prevents significant losses in classification accuracy of the state-of-the-art DNNs and, compared to baselines, it better captures correlated patterns in sensor data under dynamic sensor availability and varying sampling rates.