论文标题

贝叶斯学习多保真高斯过程的正交嵌入

Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian Processes

论文作者

Tsilifis, Panagiotis, Pandita, Piyush, Ghosh, Sayan, Andreoli, Valeria, Vandeputte, Thomas, Wang, Liping

论文摘要

我们提出了一种贝叶斯方法,以识别最佳转换,该方法将模型输入点映射到低维度变量。 “投影”映射由正统矩阵组成,该基质被认为是先验未知的,需要与GP参数共同推断,以可用的培训数据为条件。提出的贝叶斯推论方案依赖于分别使用Markov Chain Monte Carlo(MCMC)采样的两步迭代算法,该算法分别从GP参数的边际后代和投影矩阵进行了样本。为了考虑到正交投影矩阵所施加的正交性约束,采用了地球蒙特卡洛采样算法,适用于利用歧管上的概率度量。我们使用GPS(包括训练多个输出的场景)将提出的框架扩展到多保真模型。我们验证了已知的低维子空间的三个合成问题的框架。在计算挑战性的三维空气动力学优化中,对工业燃气轮机的最后一个阶段刀片的三维空气动力学优化进行了说明,我们研究了85维翼型形状参数化对两个兴趣量的影响,这是对空气动力学效率和反应程度的两个兴趣量的影响。

We present a Bayesian approach to identify optimal transformations that map model input points to low dimensional latent variables. The "projection" mapping consists of an orthonormal matrix that is considered a priori unknown and needs to be inferred jointly with the GP parameters, conditioned on the available training data. The proposed Bayesian inference scheme relies on a two-step iterative algorithm that samples from the marginal posteriors of the GP parameters and the projection matrix respectively, both using Markov Chain Monte Carlo (MCMC) sampling. In order to take into account the orthogonality constraints imposed on the orthonormal projection matrix, a Geodesic Monte Carlo sampling algorithm is employed, that is suitable for exploiting probability measures on manifolds. We extend the proposed framework to multi-fidelity models using GPs including the scenarios of training multiple outputs together. We validate our framework on three synthetic problems with a known lower-dimensional subspace. The benefits of our proposed framework, are illustrated on the computationally challenging three-dimensional aerodynamic optimization of a last-stage blade for an industrial gas turbine, where we study the effect of an 85-dimensional airfoil shape parameterization on two output quantities of interest, specifically on the aerodynamic efficiency and the degree of reaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源