论文标题

2参数持久模块的可分解性的本地特征

Local characterizations for decomposability of 2-parameter persistence modules

论文作者

Botnan, Magnus Bakke, Lebovici, Vadim, Oudot, Steve

论文摘要

我们研究了足够的当地条件的存在,在该条件下,POSET表示将其作为来自给定类别的不可分解的直接总和。在我们的工作中,索引POSET是两个完全有序集的乘积,对应于拓扑数据分析中的2参数持久性。我们感兴趣的不可分解成员属于所谓的间隔模块,根据定义,该模块是poset中间隔的指示表示。虽然整个类别的间隔模块不承认这样的局部特征,但我们表明,矩形模块的子类确实承认了一个,并且从某种意义上说,这是这样做的最大的子类。

We investigate the existence of sufficient local conditions under which poset representations decompose as direct sums of indecomposables from a given class. In our work, the indexing poset is the product of two totally ordered sets, corresponding to the setting of 2-parameter persistence in topological data analysis. Our indecomposables of interest belong to the so-called interval modules, which by definition are indicator representations of intervals in the poset. While the whole class of interval modules does not admit such a local characterization, we show that the subclass of rectangle modules does admit one and that it is, in some precise sense, the largest subclass to do so.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源