论文标题
野外的nerf:无约束照片集的神经辐射场
NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
论文作者
论文摘要
我们提出了一种基于学习的方法,用于仅使用野外照片的非结构化收藏来综合复杂场景的新颖观点。我们建立在神经辐射场(NERF)的基础上,该磁力场(NERF)使用多层感知器的权重来对场景的密度和颜色进行建模,这是3D坐标的函数。尽管NERF在受控设置下捕获的静态主体的图像上很好地工作,但它无法在不受控制的图像中对许多普遍存在的现实世界现象进行建模,例如可变照明或瞬态封锁者。我们向NERF介绍了一系列扩展,以解决这些问题,从而从从Internet获取的非结构化图像收集中实现了准确的重建。我们将我们的系统(称为Nerf-W)应用于著名地标的互联网照片集,并展示了比以前的艺术状态更接近光真相的时间一致的新型视图渲染图。
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model the density and color of a scene as a function of 3D coordinates. While NeRF works well on images of static subjects captured under controlled settings, it is incapable of modeling many ubiquitous, real-world phenomena in uncontrolled images, such as variable illumination or transient occluders. We introduce a series of extensions to NeRF to address these issues, thereby enabling accurate reconstructions from unstructured image collections taken from the internet. We apply our system, dubbed NeRF-W, to internet photo collections of famous landmarks, and demonstrate temporally consistent novel view renderings that are significantly closer to photorealism than the prior state of the art.