论文标题

在朱莉娅(Julia)限制方向上

On Julia limiting directions in higher dimensions

论文作者

Fletcher, Alastair

论文摘要

在本文中,我们首次研究了朱莉娅(Julia)在$ \ mathbb {r}^n $ of thromencentental-type中限制了Quasiregular映射的方向。首先,我们给出条件,每个方向都是朱莉娅限制方向。在此过程中,我们的方法表明,如果准拟合组件包含一个部门域,那么该扇区的生长就存在多项式结合。其次,我们在$ \ mathbb {r}^3 $确定哪种紧凑型子集的$ s^2 $中为反问题做出了贡献。这里的方法将需要表明$ \ mathbb {r}^3 $中的某些部门域是环境的quasiballs,这是对确定哪个域的众所周知的困难问题的贡献,是单位球$ \ m athbb {b}^3 $在$ \ mathbb $ \ mathbbbbbbbb的环境quasiconformal下的图像。

In this paper we study, for the first time, Julia limiting directions of quasiregular mappings in $\mathbb{R}^n$ of transcendental-type. First, we give conditions under which every direction is a Julia limiting direction. Along the way, our methods show that if a quasi-Fatou component contains a sectorial domain, then there is a polynomial bound on the growth in the sector. Second, we give a contribution to the inverse problem in $\mathbb{R}^3$ of determining which compact subsets of $S^2$ can give rise to Julia limiting directions. The methods here will require showing that certain sectorial domains in $\mathbb{R}^3$ are ambient quasiballs, which is a contribution to the notoriously hard problem of determining which domains are the image of the unit ball $\mathbb{B}^3$ under an ambient quasiconformal map of $\mathbb{R}^3$ to itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源