论文标题

超级刺激性非绝热几何量子控制

Super-robust nonadiabatic geometric quantum control

论文作者

Liu, Bao-Jie, Wang, Yuan-Sheng, Yung, Man-Hong

论文摘要

已经提出了非绝热的几何量子计算(NGQC)和非绝热的全量子量子计算(NHQC),以减少几何量子门的运行时间。但是,就针对实验控制误差的鲁棒性而言,在大多数情况下,现有的NGQC和NHQC方案比标准动力门没有优势。在这里,我们给出了为什么非绝热几何门对控制误差敏感的原因,此外,我们提出了一种超级稳定的非绝热几何量子控制的方案,其中超固定条件可以保证几何栅极的高速和稳健性。为了说明超弹性几何量子门的工作机制,我们分别为两级和三级量子系统提供了两个简单的SR-NGQC和SR-NHQC示例。实验参数的理论和数值结果表明,与先前的NGQC,NHQC和标准动力学方案相比,我们的方案可以显着改善栅极性能。超级射击几何量子计算可以应用于各种物理平台,例如超导量子,量子点和捕获的离子。所有这些充分表明,我们的方案为稳健的几何量子计算提供了一种有希望的方法。

Nonadiabatic geometric quantum computation (NGQC) and nonadiabatic holonomic quantum computation (NHQC) have been proposed to reduce the run time of geometric quantum gates. However, in terms of robustness against experimental control errors, the existing NGQC and NHQC scenarios have no advantage over standard dynamical gates in most cases. Here, we give the reasons why nonadiabatic geometric gates are sensitive to the control errors and, further, we propose a scheme of super-robust nonadiabatic geometric quantum control, in which the super-robust condition can guarantee both high speed and robustness of the geometric gate. To illustrate the working mechanism of super-robust geometric quantum gates, we give two simple examples of SR-NGQC and SR-NHQC for two- and three-level quantum systems, respectively. Theoretical and numerical results with the experimental parameters indicate that our scheme can significantly improve the gate performance compared to the previous NGQC, NHQC, and standard dynamical schemes. Super-robust geometric quantum computation can be applied to various physical platforms such as superconducting qubits, quantum dots, and trapped ions. All of these sufficiently show that our scheme provides a promising way towards robust geometric quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源