论文标题

图像分割中的空间自适应正则化

Spatially Adaptive Regularization in Image Segmentation

论文作者

Antonelli, Laura, De Simone, Valentina, di Serafino, Daniela

论文摘要

我们通过引入考虑空间图像信息的局部正则化,修改了Chan,Esedoglu和Nikolova提出的总变量调查的图像分割模型[Siam on Applied Mathematics 66,2006]。我们提出了一些针对给定图像的卡通质量分解,在平均值和中位过滤器以及阈值技术上定义局部正规化参数的技术,目的是防止分段构造或平滑区域的过度正则化,并在非牙齿区域中保持空间特征。我们通过使用拆分布雷格曼迭代来解决修改模型。数值实验显示了我们方法的有效性。

We modify the total-variation-regularized image segmentation model proposed by Chan, Esedoglu and Nikolova [SIAM Journal on Applied Mathematics 66, 2006] by introducing local regularization that takes into account spatial image information. We propose some techniques for defining local regularization parameters, based on the cartoon-texture decomposition of the given image, on the mean and median filters, and on a thresholding technique, with the aim of preventing excessive regularization in piecewise-constant or smooth regions and preserving spatial features in nonsmooth regions. We solve the modified model by using split Bregman iterations. Numerical experiments show the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源