论文标题

可分离重建问题的多尺度矩阵铅笔

Multiscale matrix pencils for separable reconstruction problems

论文作者

Cuyt, Annie, Lee, Wen-shin

论文摘要

指数数据拟合的非线性逆问题是可分离的,因为拟合函数是参数化指数函数的线性组合,因此允许与非线性参数分别求解线性系数。矩阵铅笔方法将问题语句重新定义为非线性参数的广义特征值问题,而线性参数的结构化线性系统通常被视为计算解决问题的更稳定方法。在第2节中,总结了与经典复杂指数拟合或稀疏插值问题相关的基质铅笔,并引入了扩张和翻译的概念以在不同的尺度上获得基质铅笔。 指数分析较早地被推广到使用多个多项式基础函数和某些操作员征函数的使用。但是,在大多数概括中,就缺乏特征值问题的计算方案。在随后的第3--6节中,矩阵铅笔公式(包括扩张和翻译范式)被推广到更多功能。这些周期性,多项式或特殊功能类都需要定制的方法,其中最佳使用是针对所考虑的稀疏插值问题中使用的参数化基本或特殊功能的属性。每次概括都相关联的结构化线性矩阵铅笔与非线性和线性参数的计算方案相关联,分别来自广义特征值问题和一个或多个结构化的线性系统。 最后,在第7节中,我们说明了新方法。

The nonlinear inverse problem of exponential data fitting is separable since the fitting function is a linear combination of parameterized exponential functions, thus allowing to solve for the linear coefficients separately from the nonlinear parameters. The matrix pencil method, which reformulates the problem statement into a generalized eigenvalue problem for the nonlinear parameters and a structured linear system for the linear parameters, is generally considered as the more stable method to solve the problem computationally. In Section 2 the matrix pencil associated with the classical complex exponential fitting or sparse interpolation problem is summarized and the concepts of dilation and translation are introduced to obtain matrix pencils at different scales. Exponential analysis was earlier generalized to the use of several polynomial basis functions and some operator eigenfunctions. However, in most generalizations a computational scheme in terms of an eigenvalue problem is lacking. In the subsequent Sections 3--6 the matrix pencil formulation, including the dilation and translation paradigm, is generalized to more functions. Each of these periodic, polynomial or special function classes needs a tailored approach, where optimal use is made of the properties of the parameterized elementary or special function used in the sparse interpolation problem under consideration. With each generalization a structured linear matrix pencil is associated, immediately leading to a computational scheme for the nonlinear and linear parameters, respectively from a generalized eigenvalue problem and one or more structured linear systems. Finally, in Section 7 we illustrate the new methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源