论文标题

riemann歧管II中的哈密顿量和拉格朗日BRST量化

Hamiltonian and Lagrangian BRST quantization in Riemann Manifold II

论文作者

Pandey, Vipul Kumar

论文摘要

我们以前曾在Hypersurface $ v_ {n-1} $上开发了BRST量化,该n尺寸欧几里得空间$ r_n $均在哈密顿和拉格朗日公式中。在l维歧管$ v_l $嵌入$ r_n $的情况下,我们将形式主义概括为$ r_n $,$ 1 \ leq l <n $。结果基本上与上一个相同。我们还使用圆环结上的粒子运动的简单示例验证了此处获得的结果。

We have previously developed the BRST quantization on the hypersurface $V_{N-1}$ embedded in N dimensional Euclidean space $R_N$ in both Hamiltonian and Lagrangian formulation. We generalize the formalism in the case of L dimensional manifold $V_L$ embedded in $R_N$ with $1\leq L < N$. The result is essentially the same as the previous one. We have also verified the results obtained here using a simple example of particle motion on a torus knot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源