论文标题

用比例不变的阻尼和联合非线性对波方程的爆破进行改进

Improvement on the blow-up of the wave equation with the scale-invariant damping and combined nonlinearities

论文作者

Hamouda, Makram, Hamza, Mohamed Ali

论文摘要

我们在本文中考虑了抑制波方程,在\ textIt {scale-casiniant案例}中具有两个合并的非线性,如下所示:\ begin {displaymath} \ d(e)\ hspace \ hspace {1cm} {1cm} u__ {tt} u { \ quad \ mbox {in} \ \ \ r^n \ times [0,\ infty),\ end {display-math}带有少量数据。被删除,第二个可以从$(0,μ_*/2)$延长至$(0,μ_*)$,其中$μ_*> 0 $是$(q-1)\ left的解决方案\ left(((n+μ_* - 1)p-2 \ 1)p-2 \ right)= 4 $。的确,由于对阻尼术语在解决方案的全球动态中的影响有更好的理解,我们认为$μ$的新间隔更好地描述了爆破和全球存在区域之间的阈值。此外,利用问题$(e)$中所用的技术,我们还与Glassey猜想的$(e)$相关的\ cite {lt2,palmieri}的结果改进了结果,但没有非线性项$ | u | u |^q $。更确切地说,我们将爆炸区域从$ p \ in(1,p_g(n+σ)] $扩展,其中$σ$由下面的\ eqref {sigma}给出,到$ p \ in(1,p_g(n+μ)],因此在这种情况下可以更好地估计生命的估计。

We consider in this article the damped wave equation, in the \textit{scale-invariant case} with combined two nonlinearities, which reads as follows: \begin{displaymath} \d (E) \hspace{1cm} u_{tt}-Δu+\fracμ{1+t}u_t=|u_t|^p+|u|^q, \quad \mbox{in}\ \R^N\times[0,\infty), \end{displaymath} with small initial data.\\ Compared to our previous work \cite{Our}, we show in this article that the first hypothesis on the damping coefficient $μ$, namely $μ< \frac{N(q-1)}{2}$, can be removed, and the second one can be extended from $(0, μ_*/2)$ to $(0, μ_*)$ where $μ_*>0$ is solution of $(q-1)\left((N+μ_*-1)p-2\right) = 4$. Indeed, owing to a better understanding of the influence of the damping term in the global dynamics of the solution, we think that this new interval for $μ$ describe better the threshold between the blow-up and the global existence regions. Moreover, taking advantage of the techniques employed in the problem $(E)$, we also improve the result in \cite{LT2,Palmieri} in relationship with the Glassey conjecture for the solution of $(E)$ but without the nonlinear term $|u|^q$. More precisely, we extend the blow-up region from $p \in (1, p_G(N+σ)]$, where $σ$ is given by \eqref{sigma} below, to $p \in (1, p_G(N+μ)]$ giving thus a better estimate of the lifespan in this case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源