论文标题
较高的规律性和有限的时间爆破非局部伪抛蛋白方程的锥度变性
Higher regularity and finite time blow-up to nonlocal pseudo-parabolic equation with conical degeneration
论文作者
论文摘要
本文处理了具有圆锥变性的非局部半线性伪撒代蛋白方程式的初始价值问题,该方程已在[全球良好的良好性,用于非局部半内性伪parabolic-parabolic方程,带有圆锥形的变性,J. Intialial equication,J。Intialial equication,2020,269,269(5)(5):45966-66-66-4597--4597--4597--4597。我们首先提高弱解决方案的规律性,然后研究该问题的有限时间爆破现象。我们的爆炸初始条件仅取决于Nehari功能和保守的积分,这表明可以去除原始论文中初始能量功能的假设。
This paper deals with the initial-boundary value problem to a nonlocal semilinear pseudo-parabolic equation with conical degeneration, which has been studied in [Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration, J. Differential Equations, 2020, 269(5): 4566--4597]. We first improve the regularity of the weak solution, and then study finite time blow-up phenomenon for the problem. Our initial condition for blow-up only depends on Nehari functional and the conservative integral, which suggests that the assumption of initial energy functional in the original paper can be removed.