论文标题

动态C* - 代数和动力学扰动

Dynamical C*-algebras and kinetic perturbations

论文作者

Buchholz, Detlev, Fredenhagen, Klaus

论文摘要

基于局部散射算子的Minkowski空间中标量字段的动态C* - 代数的框架扩展到具有局部扰动的动力学项的理论。这些术语编码有关基础时空度量的信息,因此必须相应地调整散射操作员之间的因果关系。结果表明,扩展的代数描述了标量量子场,并在局部变形的Minkowski空间中传播。诱导这种运动的抽象散射算子的具体表示,已知存在于Fock空间上。然而,这些代表还满足广泛的因果关系的证据需要共同学性质的新论点。他们暗示存在扩展动力学C*代数的Fock空间表示,涉及该场的线性以及动力学和尖端的二次扰动。

The framework of dynamical C*-algebras for scalar fields in Minkowski space, based on local scattering operators, is extended to theories with locally perturbed kinetic terms. These terms encode information about the underlying spacetime metric, so the causality relations between the scattering operators have to be adjusted accordingly. It is shown that the extended algebra describes scalar quantum fields, propagating in locally deformed Minkowski spaces. Concrete representations of the abstract scattering operators, inducing this motion, are known to exist on Fock space. The proof that these representers also satisfy the generalized causality relations requires, however, novel arguments of a cohomological nature. They imply that Fock space representations of the extended dynamical C*-algebra exist, involving linear as well as kinetic and pointlike quadratic perturbations of the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源