论文标题
无毛定理,用于非典型的自我散发静态多个标量线
No-hair theorems for non-canonical self-gravitating static multiple scalar fields
论文作者
论文摘要
在某些假设下,我们证明了在球形对称的空间中非型自动自我散发静态多个标量场的无头性定理。结果表明,唯一的静态,球体对称和渐近平坦的黑洞解决方案由Schwarzschild公制和恒定的多尺度图组成。我们还证明没有具有静态标量磁场和常规中心的静态,无水平,渐近平面的,球体对称的溶液。最后的定理表明,具有Neumann边界条件的静态,渐近,球形对称的反射紧凑物体无法支持其外部空间空间区域中的非平凡的自我植物的非统治(和规范)多尺度图。为了证明无头发定理,我们得出了新的差异身份。
We prove under certain assumptions no-hair theorems for non-canonical self-gravitating static multiple scalar fields in spherically symmetric spacetimes. It is shown that the only static, spherically symmetric and asymptotically flat black hole solutions consist of the Schwarzschild metric and a constant multi-scalar map. We also prove that there are no static, horizonless, asymptotically flat, spherically symmetric solutions with static scalar fields and a regular center. The last theorem shows that the static, asymptotically flat, spherically symmetric reflecting compact objects with Neumann boundary conditions can not support a non-trivial self-gravitating non-canonical (and canonical) multi-scalar map in their exterior spacetime regions. In order to prove the no-hair theorems we derive a new divergence identity.