论文标题
现实世界图像超分辨率的组成部分分隔
Component Divide-and-Conquer for Real-World Image Super-Resolution
论文作者
论文摘要
在本文中,我们提出了一个大规模的现实图像超分辨率数据集,即DREALSR,以及一个分裂和构成的超级分辨率(SR)网络,探索了使用低级图像组件的引导SR模型的实用性。 Drealsr建立了一种具有不同现实世界降解过程的新SR基准,从而减轻了常规模拟图像降解的局限性。通常,SR的靶标随具有不同低级图像组件的图像区域而变化,例如,为平面区域保留平滑度,边缘锐化,并增强纹理的细节。学习具有常规像素损失的SR模型通常很容易由平坦的区域和边缘主导,并且无法推断出复杂纹理的现实细节。我们提出了一个组件分裂和串扰(CDC)模型和SR的梯度加权(GW)损失。我们的疾病预防控制中心(CDC)用三个组件来解析图像,采用三个组成部分块(CAB),以中间监督学习策略来学习细心的面具和中间SR预测,并遵循分裂和构成学习原则的SR模型。我们的GW损失还提供了一种可行的方法,可以平衡SR图像组件的困难。广泛的实验验证了我们的CDC的出色性能以及与不同现实世界情景相关的Drealsr数据集的挑战性方面。我们的数据集和代码在https://github.com/xiezw5/component-divide-and-conquer-for-for-real-world-image-image-super-lastolution上公开获得
In this paper, we present a large-scale Diverse Real-world image Super-Resolution dataset, i.e., DRealSR, as well as a divide-and-conquer Super-Resolution (SR) network, exploring the utility of guiding SR model with low-level image components. DRealSR establishes a new SR benchmark with diverse real-world degradation processes, mitigating the limitations of conventional simulated image degradation. In general, the targets of SR vary with image regions with different low-level image components, e.g., smoothness preserving for flat regions, sharpening for edges, and detail enhancing for textures. Learning an SR model with conventional pixel-wise loss usually is easily dominated by flat regions and edges, and fails to infer realistic details of complex textures. We propose a Component Divide-and-Conquer (CDC) model and a Gradient-Weighted (GW) loss for SR. Our CDC parses an image with three components, employs three Component-Attentive Blocks (CABs) to learn attentive masks and intermediate SR predictions with an intermediate supervision learning strategy, and trains an SR model following a divide-and-conquer learning principle. Our GW loss also provides a feasible way to balance the difficulties of image components for SR. Extensive experiments validate the superior performance of our CDC and the challenging aspects of our DRealSR dataset related to diverse real-world scenarios. Our dataset and codes are publicly available at https://github.com/xiezw5/Component-Divide-and-Conquer-for-Real-World-Image-Super-Resolution