论文标题

Adv-Watermark:一种新颖的水印扰动,用于对抗例子

Adv-watermark: A Novel Watermark Perturbation for Adversarial Examples

论文作者

Jia, Xiaojun, Wei, Xingxing, Cao, Xiaochun, Han, Xiaoguang

论文摘要

最近的研究表明,在原始图像中添加一些不可察觉的扰动可能会欺骗深度学习模型。但是,当前的对抗扰动通常以噪音的形式显示,因此没有实际含义。图像水印是一种广泛用于版权保护的技术。我们可以将图像水印视为有意义的噪音之王,并将其添加到原始图像中不会影响人们对图像内容的理解,并且不会引起人们的怀疑。因此,使用水印生成对抗性实例将很有趣。在本文中,我们提出了一种新型的水印扰动,以供对抗性示例(Adv-Watermark),该扰动结合了图像水印技术和对抗性示例算法。在干净的图像中添加有意义的水印可以攻击DNN型号。具体来说,我们提出了一种新型的优化算法,该算法称为盆地跳跃(BHE),以在黑盒攻击模式下生成对抗水印。多亏了BHE,Adv-Watermark仅需要从威胁模型中进行一些查询即可完成攻击。在ImageNet和Casia-Webface数据集上进行的一系列实验表明,所提出的方法可以有效地生成对抗性示例,并表现优于最新的攻击方法。此外,Adv-Watermark对图像转换防御方法更为强大。

Recent research has demonstrated that adding some imperceptible perturbations to original images can fool deep learning models. However, the current adversarial perturbations are usually shown in the form of noises, and thus have no practical meaning. Image watermark is a technique widely used for copyright protection. We can regard image watermark as a king of meaningful noises and adding it to the original image will not affect people's understanding of the image content, and will not arouse people's suspicion. Therefore, it will be interesting to generate adversarial examples using watermarks. In this paper, we propose a novel watermark perturbation for adversarial examples (Adv-watermark) which combines image watermarking techniques and adversarial example algorithms. Adding a meaningful watermark to the clean images can attack the DNN models. Specifically, we propose a novel optimization algorithm, which is called Basin Hopping Evolution (BHE), to generate adversarial watermarks in the black-box attack mode. Thanks to the BHE, Adv-watermark only requires a few queries from the threat models to finish the attacks. A series of experiments conducted on ImageNet and CASIA-WebFace datasets show that the proposed method can efficiently generate adversarial examples, and outperforms the state-of-the-art attack methods. Moreover, Adv-watermark is more robust against image transformation defense methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源