论文标题

在任何维度设置的抛物线层次趋化性模型中,逻辑源在抛物线层次趋化模型中预防有限的时间爆破

Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting

论文作者

Kurt, Halil Ibrahim, Shen, Wenxian

论文摘要

近年来,已经引起了很多关注,即后勤动力学是否足以实施经典解决方案的全球存在或防止各种趋化模型中有限的时间爆炸。当前的论文是在任何空间维度设置中以奇异灵敏度和逻辑来源研究上述问题,\ begin {equination} \ begin {cases} u_t =ΔU-t =ΔU-t =Δu-ub \ nabla \ cdot(\ frac {case} u^{1+σ}),\ quad&x \ inω\ cr 0 =Δv-μv+νu,\ quad&x \ inω\ quad \ quad \ cr \ frac {\ partial u} {\ partial u} {\ partial n} &x \ in \partialΩ,\ end {cases} \ end {equation}其中$ω\ subset \ mathbb {r}^n $是一个有界域,具有光滑的边界$ \partialΩ$,$ \ qub $ cub as $ co $ as us singular趋化性敏感性敏感性,$ a(x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,T)常数和$σ\ ge 0 $。当$σ> 0 $时,我们证明,对于每个给定的非负初始数据$ 0 \ not \ equiv U_0 \ in C^0(\ barω)$,(0.1)都有一个独特的全球经典解决方案$(u_σ(x,x,t; u_0),v_σ(x,x,x,t; u_0)$ with $ u__的$ u__t;在任何空间维度设置中,强大的逻辑动力学足以实施经典解决方案的全球存在,因此即使对于任意大的$χ$,也可以防止有限的时间爆炸发生。另外,在条件下\ begin {等式*} a _ {\ inf}> \ begin {case} \ frac {μχ^2} {4},&\ text {如果$ 0 <χ\ leq 2,$} \\μ(χ-1),&\ text {IF $。经典的解决方案$(u(x,t; u_0,0),v(x,t; u_0,0))$存在于全球范围内,并且只要$ a(x,t)$和$ u_0(x)$都不小。

In recent years, a lot of attention has been drawn to the question of whether logistic kinetics is sufficient to enforce the global existence of classical solutions or to prevent finite-time blow-up in various chemotaxis models. The current paper is to study the above question for the following parabolic-elliptic chemotaxis system with singular sensitivity and logistic source in any space dimensional setting, \begin{equation} \begin{cases} u_t=Δu-χ\nabla\cdot (\frac{u}{v} \nabla v)+u(a(x,t)-b(x,t) u^{1+σ}),\quad &x\in Ω\cr 0=Δv-μv+νu,\quad &x\in Ω\quad \cr\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0,\quad &x\in\partialΩ, \end{cases} \end{equation} where $Ω\subset \mathbb{R}^n$ is a bounded domain with smooth boundary $\partialΩ$, $χ$ is the singular chemotaxis sensitivity coefficient, $a(x,t)$ and $b(x,t)$ are positive smooth functions, $μ,ν$ are positive constants, and $σ\ge 0$. When $σ>0$, we prove that, for every given nonnegative initial data $0\not\equiv u_0\in C^0(\bar Ω)$, (0.1) has a unique globally defined classical solution $(u_σ(x,t;u_0),v_σ(x,t;u_0))$ with $u_σ(x,0;u_0)=u_0(x)$, which shows that, in any space dimensional setting, strong logistic kinetics is sufficient to enforce the global existence of classical solutions and hence prevents the occurrence of finite-time blow-up even for arbitrarily large $χ$. In addition, the solutions are shown to be uniformly bounded under the conditions \begin{equation*} a_{\inf}> \begin{cases} \frac{μχ^2}{4}, &\text{if $0< χ\leq 2,$}\\ μ(χ-1), &\text{if $χ>2$.}\\ \end{cases} \end{equation*} When $σ=0$, we show that the classical solution $(u(x,t;u_0,0),v(x,t;u_0,0))$ exists globally and stays bounded provided that both $a(x,t)$ and $u_0(x)$ are not small.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源