论文标题
接近频率函数子类的第三个对数系数
The Third Logarithmic Coefficient For The Subclasses Of Close-To-Convex Functions
论文作者
论文摘要
令$ \ mathcal {a} $表示单位磁盘$ \ mathbb {d}中的所有分析函数的集合$ f $ <1 \} $由$ f(0)= 0 $和$ f'(0)= 1归一化。纸张,当$ f $属于$ f''(0)$的通常情况下,第三个对数系数的上限是$ f $属于近距离函数的一些熟悉的子类时。
Let $\mathcal{A}$ denote the set of all analytic functions $f$ in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}: |z| < 1\}$ normalized by $f (0) = 0$ and $f'(0) = 1.$ The logarithmic coefficients $γ_n$ of $f \in \mathcal{A}$ are defined by $ \log f(z)/z =2 \sum_{n=1}^{\infty}γ_{n}z^{n}.$ In the present paper, the upper bound of the third logarithmic coefficient in general case of $f''(0)$ was computed when $f$ belongs to some familiar subclasses of close-to-convex functions.