论文标题

守护程序:使用多阶段功能挖掘

DAEMON: Dataset-Agnostic Explainable Malware Classification Using Multi-Stage Feature Mining

论文作者

Korine, Ron, Hendler, Danny

论文摘要

多种变质和多态恶意变体每天都会通过突变引擎自动生成,这些突变引擎在保留其功能的同时会改变恶意程序的代码,以避免基于签名的检测。这些自动过程大大增加了恶意软件变体的数量,认为它们的全手术分析不可能。恶意软件分类是确定新的恶意变体所属家庭的任务。同一恶意软件家族的变体显示出相似的行为模式。因此,对新发现的恶意程序和应用程序进行分类有助于评估其构成的风险。此外,恶意软件分类有助于确定哪些新发现的变体应进行安全专家的手动分析,以确定它们是否属于一个新家庭(例如,成员利用零日脆弱性的成员)或仅仅是已知恶意家庭中概念漂移的结果。近年来,这是针对恶意软件分类设计高临界性自动工具的激励研究。在这项工作中,我们介绍了守护程序 - 一种新颖的数据集敏锐的恶意软件分类器。守护程序的一个关键特性是它使用的功能类型及其开采方式有助于理解恶意软件家族的独特行为,从而可以解释其分类决策。我们使用X86二进制文件的大规模数据集优化了守护程序,这些数据集属于瞄准运行Windows的计算机的多个恶意软件系列。然后,我们对其进行了重新培训,并将其应用于其他两个大规模的恶意Android应用程序数据集(包括许多恶意软件系列)。守护程序在所有数据集中获得了高度准确的分类结果,并确定它也是平台不可静止的。

Numerous metamorphic and polymorphic malicious variants are generated automatically on a daily basis by mutation engines that transform the code of a malicious program while retaining its functionality, in order to evade signature-based detection. These automatic processes have greatly increased the number of malware variants, deeming their fully-manual analysis impossible. Malware classification is the task of determining to which family a new malicious variant belongs. Variants of the same malware family show similar behavioral patterns. Thus, classifying newly discovered malicious programs and applications helps assess the risks they pose. Moreover, malware classification facilitates determining which of the newly discovered variants should undergo manual analysis by a security expert, in order to determine whether they belong to a new family (e.g., one whose members exploit a zero-day vulnerability) or are simply the result of a concept drift within a known malicious family. This motivated intense research in recent years on devising high-accuracy automatic tools for malware classification. In this work, we present DAEMON - a novel dataset-agnostic malware classifier. A key property of DAEMON is that the type of features it uses and the manner in which they are mined facilitate understanding the distinctive behavior of malware families, making its classification decisions explainable. We've optimized DAEMON using a large-scale dataset of x86 binaries, belonging to a mix of several malware families targeting computers running Windows. We then re-trained it and applied it, without any algorithmic change, feature re-engineering or parameter tuning, to two other large-scale datasets of malicious Android applications consisting of numerous malware families. DAEMON obtained highly accurate classification results on all datasets, establishing that it is also platform-agnostic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源