论文标题

使用基于源的论文评分的神经网络注意分数自动局部组件提取

Automated Topical Component Extraction Using Neural Network Attention Scores from Source-based Essay Scoring

论文作者

Zhang, Haoran, Litman, Diane

论文摘要

虽然自动化的论文评分(AES)可以大规模可靠地评分论文,但自动写作评估(AWE)还提供了形成性的反馈来指导论文修订。但是,神经AE通常不会为支持敬畏提供有用的功能表示。本文通过提取局部组件(TCS)来使用注意力层的中间输出来代表源文本中的证据,介绍了一种链接敬畏和神经AE的方法。我们使用基于功能的AES需要TC来评估性能。结果表明,无论是自动使用或手动构造的TC用于1)将论文表示为基于标题的特征,2)评分论文是可比的。

While automated essay scoring (AES) can reliably grade essays at scale, automated writing evaluation (AWE) additionally provides formative feedback to guide essay revision. However, a neural AES typically does not provide useful feature representations for supporting AWE. This paper presents a method for linking AWE and neural AES, by extracting Topical Components (TCs) representing evidence from a source text using the intermediate output of attention layers. We evaluate performance using a feature-based AES requiring TCs. Results show that performance is comparable whether using automatically or manually constructed TCs for 1) representing essays as rubric-based features, 2) grading essays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源