论文标题

基于综合征的Groebner-Bases方法,基于综合征的快速追逐解码 - 固体代码

A Groebner-bases approach to syndrome-based fast Chase decoding of Reed--Solomon codes

论文作者

Shany, Yaron, Berman, Amit

论文摘要

我们提出了一种简单的基于综合征的快速追逐解码算法,用于芦苇 - 固体(RS)代码。这种算法最初由Wu(IEEE Trans。,2012年1月)提出,建立在Berlekamp-Massey(BM)算法的属性上。 WU设计了一种快速多项式UPDATE算法,以构建错误位置多项式(ELP)作为特定线性馈回移位寄存器(LFSR)合成问题的解决方案。这导致了一种概念上复杂的算法,分为$ 8 $微妙的情况。此外,WU的多项式上升算法并不适合使用评估载体。因此,需要进行复杂的修改,以实现真正的“一通”追逐解码算法,即,需要每次修改的坐标$ o(n)$操作的追逐解码算法,其中$ n $是RS代码长度。 当前论文的主要结果是基于概念上的简单综合症的RS代码快速追逐解码。我们没有从头开始开发理论,而是使用$ \ Mathbb {f} _Q [x] $的模块的良好的groebner基础理论(其中$ \ m athbb {f} _q $是$ q $元素的有限字段,用于$ q $ ements $ q $ a prime a Prime a Priende a Prime a Priend a prime a prone a prime a prime a prime a prime a a Prime)。基本的观察结果是,而不是WU的LFSR合成问题,而是考虑模块上的“正确”最小化问题要简单得多。解决这个最小化问题的解决方案是一种简单的多项式上限算法,避免了综合征更新并与评估的矢量无缝搭配。结果,我们获得了一种概念上简单的算法,用于对RS代码的一通追逐解码。我们的算法足够通用,可以处理任何算法,该算法找到了关键方程的解决方案模块作为初始算法(包括欧几里得算法)的溶液模块,并且不仅绑定到BM算法。

We present a simple syndrome-based fast Chase decoding algorithm for Reed--Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT, Jan. 2012), building on properties of the Berlekamp--Massey (BM) algorithm. Wu devised a fast polynomial-update algorithm to construct the error-locator polynomial (ELP) as the solution of a certain linear-feedback shift register (LFSR) synthesis problem. This results in a conceptually complicated algorithm, divided into $8$ subtly different cases. Moreover, Wu's polynomial-update algorithm is not immediately suitable for working with vectors of evaluations. Therefore, complicated modifications were required in order to achieve a true "one-pass" Chase decoding algorithm, that is, a Chase decoding algorithm requiring $O(n)$ operations per modified coordinate, where $n$ is the RS code length. The main result of the current paper is a conceptually simple syndrome-based fast Chase decoding of RS codes. Instead of developing a theory from scratch, we use the well-established theory of Groebner bases for modules over $\mathbb{F}_q[X]$ (where $\mathbb{F}_q$ is the finite field of $q$ elements, for $q$ a prime power). The basic observation is that instead of Wu's LFSR synthesis problem, it is much simpler to consider "the right" minimization problem over a module. The solution to this minimization problem is a simple polynomial-update algorithm that avoids syndrome updates and works seamlessly with vectors of evaluations. As a result, we obtain a conceptually simple algorithm for one-pass Chase decoding of RS codes. Our algorithm is general enough to work with any algorithm that finds a Groebner basis for the solution module of the key equation as the initial algorithm (including the Euclidean algorithm), and it is not tied only to the BM algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源