论文标题

熵指导的对手模型,用于弱监督物体本地化

Entropy Guided Adversarial Model for Weakly Supervised Object Localization

论文作者

Benassou, Sabrina Narimene, Shi, Wuzhen, Jiang, Feng

论文摘要

由于缺乏边界框注释,因此弱监督的物体本地化是具有挑战性的。先前的工作倾向于生成类激活地图,即凸轮本地化对象。不幸的是,网络仅激活区分对象并且不会激活整个对象的功能。某些方法倾向于删除对象的某些部分,以迫使CNN检测其他功能,而另一些方法会更改网络结构以从模型的不同级别生成多个凸轮。在本文中,我们建议利用网络的概括能力,并使用干净的示例和对抗性示例训练模型,以本地化整个对象。对抗示例通常用于训练健壮的模型,并且是添加扰动的图像。为了获得良好的分类精度,接受对抗示例训练的CNN被迫检测更多歧视对象的功能。我们建议将香农熵应用于网络生成的凸轮上,以在培训期间指导它。我们的方法没有删除图像的任何部分,它也没有改变网络体系结构,并且广泛的实验表明,我们的熵引导的对抗模型(EGA模型)改善了艺术基准的性能,以提高本地化和分类精度。

Weakly Supervised Object Localization is challenging because of the lack of bounding box annotations. Previous works tend to generate a class activation map i.e CAM to localize the object. Unfortunately, the network activates only the features that discriminate the object and does not activate the whole object. Some methods tend to remove some parts of the object to force the CNN to detect other features, whereas, others change the network structure to generate multiple CAMs from different levels of the model. In this present article, we propose to take advantage of the generalization ability of the network and train the model using clean examples and adversarial examples to localize the whole object. Adversarial examples are typically used to train robust models and are images where a perturbation is added. To get a good classification accuracy, the CNN trained with adversarial examples is forced to detect more features that discriminate the object. We futher propose to apply the shannon entropy on the CAMs generated by the network to guide it during training. Our method does not erase any part of the image neither does it change the network architecure and extensive experiments show that our Entropy Guided Adversarial model (EGA model) improved performance on state of the arts benchmarks for both localization and classification accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源