论文标题
截断的库仑电势被重新审视
The truncated Coulomb potential revisited
论文作者
论文摘要
我们将Frobenius方法应用于具有截短的库仑电位的Schrödinger方程。通过膨胀系数的树木复发关系,我们截断了该系列,并获得精确的本征函数和特征值。从确切的特征值的明智安排中,我们得出了有关问题的整个范围的有用信息,并可以通过简单明了的插值获得其他特征值。
We apply the Frobenius method to the Schrödinger equation with a truncated Coulomb potential. By means of the tree-term recurrence relation for the expansion coefficients we truncate the series and obtain exact eigenfunctions and eigenvalues. From a judicious arrangement of the exact eigenvalues we derive useful information about the whole spectrum of the problem and can obtain other eigenvalues by simple and straightforward interpolation.