论文标题

Hartree-fock-Bogoliubov方程的全球估计

Global estimates for the Hartree-Fock-Bogoliubov equations

论文作者

Chong, Jacky Jia Wei, Grillakis, Manoussos G., Machedon, Matei, Zhao, Zehua

论文摘要

我们证明,某些Sobolev型规范比节能的规范稍强,及时保持统一和$ n $。这允许人们在全球及时扩展第二和第三作者的局部存在结果。证明基于摩拉维型型估计值的相互作用和Strichartz估计(包括一些新的终点结果),用于方程$ \ {\ frac {\ frac {1} {i} {i} \partial_t-Δ_{x} x}-Δ__{y} {y}坐标,例如$ l^p(dt)l^q(dx)l^2(dy)$,$ l^p(dt)l^q(dy)l^2(dx)$,$ l^p(dt)l^q(d(x-y)l^2(x-y))l^2(d(x+y))$。主要的新技术成分是混合坐标中的分散估计,这本身可能引起人们的关注。

We prove that certain Sobolev-type norms, slightly stronger than those given by energy conservation, stay bounded uniformly in time and $N$. This allows one to extend the local existence results of the second and third author globally in time. The proof is based on interaction Morawetz-type estimates and Strichartz estimates (including some new end-point results) for the equation $\{ \frac{1}{i}\partial_t-Δ_{x}-Δ_{y}+\frac{1}{N}V_N(x-y) \}Λ(t, x, y) =F$ in mixed coordinates such as $L^p(dt) L^q(dx) L^2(dy)$, $L^p(dt) L^q(dy) L^2(dx)$, $L^p(dt) L^q(d(x-y)) L^2(d(x+y))$. The main new technical ingredient is a dispersive estimate in mixed coordinates, which may be of interest in its own right.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源