论文标题

反射方程作为研究杨巴克斯方程解决方案的工具

Reflection equation as a tool for studying solutions to the Yang-Baxter equation

论文作者

Lebed, V., Vendramin, L.

论文摘要

如果给出了Yang-Baxter方程的右非降级设置理论解决方案$(x,r)$,我们在$ x $上构建了整个YBE Solutions $ r^{(k)} $ in $ x $ index $ k $(即$ r $ reflection for Reflection for Reflection to reflection $ k $)。该家族包括原始解决方案和经典派生解决方案。所有这些解决方案都会在$ x^n $上诱导辫子组/monoid的同构作用。 $ r $和$ r^{(k)} $的结构单体与明确的$ 1 $ cocycle一样的地图相关。因此,我们将反射变成用于研究YBE解决方案的工具,而不是研究的侧面对象。在不同的方向上,我们研究了非限分涉及的YBE解决方案的反射方程,表明它等同于(任何三个更简单的关系中的任何一个,并从后者的系统构建新反射的系统方法中推断出来。

Given a right-non-degenerate set-theoretic solution $(X,r)$ to the Yang-Baxter equation, we construct a whole family of YBE solutions $r^{(k)}$ on $X$ indexed by its reflections $k$ (i.e., solutions to the reflection equation for $r$). This family includes the original solution and the classical derived solution. All these solutions induce isomorphic actions of the braid group/monoid on $X^n$. The structure monoids of $r$ and $r^{(k)}$ are related by an explicit bijective $1$-cocycle-like map. We thus turn reflections into a tool for studying YBE solutions, rather than a side object of study. In a different direction, we study the reflection equation for non-degenerate involutive YBE solutions, show it to be equivalent to (any of the) three simpler relations, and deduce from the latter systematic ways of constructing new reflections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源