论文标题

原月球磁盘作为行星形成的位置

Protoplanetary Disk Rings as Sites for Planetesimal Formation

论文作者

Carrera, Daniel, Simon, Jacob B., Li, Rixin, Kretke, Katherine A., Klahr, Hubert

论文摘要

轴对称灰尘环是年轻原球磁盘的普遍特征。这些环可能是由于气体剖面中的压力凸起而引起的。一个小的凹凸会在灰尘密度中引起类似交通堵塞的图案,而大凸起可能会完全停止径向尘埃。由于SI本身需要一些初始浓度,因此尘埃浓度的增加可能会触发行星的形成。在这里,我们介绍了在ALMA观察到的那些专门模拟的压力障碍的情况下,在存在的压力障碍的情况下,介绍了行星形成的第一个3D模拟。特别是,我们在一个大3D剪切​​盒的中心放置一个压力凹凸,以及$ z = 0.01 $的初始固体与气体比率,并且包括粒子的背反应和粒子自我实力。我们分别考虑MM大小和CM大小的颗粒。对于使用CM大小颗粒的模拟,我们发现即使是小的压力凸起也会通过流不稳定性形成行星。压降确实需要完全停止径向粒子漂移,以使Si有效。此外,通过浓度在压力凸起的浓度(例如在足够高的浓度和流媒体不稳定性的情况下发生)纯粹的重力崩溃并不负责地球形成。对于MM大小的颗粒,我们发现没有发生行星形成的暂定证据。如果该结果以较高的分辨率和更广泛的参数范围保持,则可以对Promintsimals可以形成的何处对较大的限制。然而,最终,我们的结果表明,对于CM大小的颗粒,压降中的行星形成是一个极其强大的过程。

Axisymmetric dust rings are a ubiquitous feature of young protoplanetary disks. These rings are likely caused by pressure bumps in the gas profile; a small bump can induce a traffic jam-like pattern in the dust density, while a large bump may halt radial dust drift entirely. The resulting increase in dust concentration may trigger planetesimal formation by the streaming instability (SI), as the SI itself requires some initial concentration. Here we present the first 3D simulations of planetesimal formation in the presence of a pressure bump modeled specifically after those observed by ALMA. In particular, we place a pressure bump at the center of a large 3D shearing box, along with an initial solid-to-gas ratio of $Z = 0.01$, and we include both particle back-reaction and particle self-gravity. We consider both mm-sized and cm-sized particles separately. For simulations with cm-sized particles, we find that even a small pressure bump leads to the formation of planetesimals via the streaming instability; a pressure bump does {\it not} need to fully halt radial particle drift for the SI to become efficient. Furthermore, pure gravitational collapse via concentration in pressure bumps (such as would occur at sufficiently high concentrations and without the streaming instability) is not responsible for planetesimal formation. For mm-sized particles, we find tentative evidence that planetesimal formation does not occur. This result, if it holds up at higher resolution and for a broader range of parameters, could put strong constraints on where in protoplanetary disks planetesimals can form. Ultimately, however, our results suggest that for cm-sized particles, planetesimal formation in pressure bumps is an extremely robust process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源