论文标题
快速而近距离的对角线预处理
Fast and Near-Optimal Diagonal Preconditioning
论文作者
论文摘要
求解线性系统$ \ mathbf {a} x = b $的迭代方法的收敛速率通常取决于矩阵$ \ mathbf {a} $的条件编号。通过以计算廉价的方式降低该条件数来加速这些方法的常见方法。在本文中,我们重新审视了如何通过左右对角线重新缩放的数十年来如何最好地改善$ \ mathbf {a} $的状况编号。我们在多个方向上在这个问题上取得了进展。 首先,我们通过其对角线值(又称Jacobi预处理)来扩展$ \ mathbf {a} $的经典启发式范围。我们证明,这种方法将$ \ mathbf {a} $的条件编号减少到最佳缩放的二次因素之内。其次,我们为结构化的混合包装和覆盖半决赛程序(MPC SDPS)提供了一个求解器,该程序计算$ \ Mathbf {a} $ in $ \ widetilde {o}(\ text {nnz}(nnz}(nnz}(nnz}))(\ mathbf {a} $ c. $ cdot \ text^prote \ prote prote)\ start(POLTOR)\ star(这匹配了在扩展到$ \ wideTilde {o}(\ text {poly}(κ^\ star))$ factor之后求解线性系统的成本。第三,我们证明了一个足够一般的宽度独立于宽度的MPC SDP求解器将暗示我们考虑的缩放问题,并且与平均条件的度量有关的自然变体。 最后,我们强调了我们的预处理技术与半随机噪声模型的连接,以及在降低多种统计回归模型中风险中的应用。
The convergence rates of iterative methods for solving a linear system $\mathbf{A} x = b$ typically depend on the condition number of the matrix $\mathbf{A}$. Preconditioning is a common way of speeding up these methods by reducing that condition number in a computationally inexpensive way. In this paper, we revisit the decades-old problem of how to best improve $\mathbf{A}$'s condition number by left or right diagonal rescaling. We make progress on this problem in several directions. First, we provide new bounds for the classic heuristic of scaling $\mathbf{A}$ by its diagonal values (a.k.a. Jacobi preconditioning). We prove that this approach reduces $\mathbf{A}$'s condition number to within a quadratic factor of the best possible scaling. Second, we give a solver for structured mixed packing and covering semidefinite programs (MPC SDPs) which computes a constant-factor optimal scaling for $\mathbf{A}$ in $\widetilde{O}(\text{nnz}(\mathbf{A}) \cdot \text{poly}(κ^\star))$ time; this matches the cost of solving the linear system after scaling up to a $\widetilde{O}(\text{poly}(κ^\star))$ factor. Third, we demonstrate that a sufficiently general width-independent MPC SDP solver would imply near-optimal runtimes for the scaling problems we consider, and natural variants concerned with measures of average conditioning. Finally, we highlight connections of our preconditioning techniques to semi-random noise models, as well as applications in reducing risk in several statistical regression models.