论文标题

宏观经济数据转换重要

Macroeconomic Data Transformations Matter

论文作者

Coulombe, Philippe Goulet, Leroux, Maxime, Stevanovic, Dalibor, Surprenant, Stéphane

论文摘要

在低维线性回归设置中,考虑预测变量的线性转换/组合不会改变预测。但是,当预测技术要么使用收缩或非线性时,就可以。这正是机器学习(ML)宏观经济预测环境的结构。数据的预处理转化为ML算法中嵌入的正则化的变化(明确或隐式)。我们回顾了旧的转型并提出了新的转型,然后在实质性的伪样本练习中经验评估其优点。发现传统因素几乎应始终以预测因素和数据的移动平均旋转可以为各种预测目标带来重要的收益。另外,我们注意到,尽管直接预测使用基于OLS的技术时平均的平均增长率等效于平均地平线预测,但在涉及正则化和/或非参数非线性时,后者可以显着改善前者。

In a low-dimensional linear regression setup, considering linear transformations/combinations of predictors does not alter predictions. However, when the forecasting technology either uses shrinkage or is nonlinear, it does. This is precisely the fabric of the machine learning (ML) macroeconomic forecasting environment. Pre-processing of the data translates to an alteration of the regularization -- explicit or implicit -- embedded in ML algorithms. We review old transformations and propose new ones, then empirically evaluate their merits in a substantial pseudo-out-sample exercise. It is found that traditional factors should almost always be included as predictors and moving average rotations of the data can provide important gains for various forecasting targets. Also, we note that while predicting directly the average growth rate is equivalent to averaging separate horizon forecasts when using OLS-based techniques, the latter can substantially improve on the former when regularization and/or nonparametric nonlinearities are involved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源